UCG and Power Generation BHEL's Role

By: Dr. K.NANDAKUMAR

AGM/CEPD

BHEL,NEW DELHI

Overview of Indian Coals ORGANIC ASPECTS

- Sedimentation and Drift Origin
- Formations during 3 Eras viz Karharbari, Barakar& Raniganj
- Most of them Sub-Bituminous in Rank (78%)
- They do not swell on heating
- Only Raniganj coal is Bituminous(Swelling)
- Coals are generally very reactive
- High Composite Macerals(Highly Reactive, Reactive and Low reactive
- Both Thick and Thin seams are prevalent.

Overview of Indian Coals INORGANIC ASPECTS

- Minerals homogenously mixed with coal
- Due to Sedimentation Deposition, Floor of coal Seam contains Sandstone, Shale & Carbonaceous Shale and Shaly coal
- Similarly there is transition from Prime coal to overburden layers
- Mineral Matter in core Coal Seam is much lesser (20 to 30%) M.Matter content goes up from Core towards Overburden and Floor(40 to 60%).

Lignites of India

- · Lignite's of Fresh Water Origin.
 - Tamil Nadu, Pondicherry, J&K., Kerala
- Lignite's of Marine Water Origin
 - Gujarat :

Lignite Reserves considered Equivalent to Total Indian Coal Reserves, but at a depth of 1000 meters & above(Mehsana – Ahmedabad Block & Tonsan Block -Patan – Tharad)

- Rajasthan

More locations less quantum of reserves (100-400 meters depth

Overview of UCG Technologies Required

- For Shallow depth seams
 - with and without Aquifier, Corrosive depositions, Saucer like deposits, etc.
- For Medium depth seams
 -with and without Aquifier, thin and thick seams, etc.
- For Deep seams

Coal Reserves & UCG Power Capacity

For capacity : 250/300MW

For Service Life : 30 to 35 Years

Reserve Required

With Coal : 30 to 40 Million Tons

With Lignite : 50 to 60 Million tons

Coal Bed Methane & UCG

- For Gas from UCG to be of consistent quality and quantity, it is necessary to link production of more number of cavities
- A ton of coal can give 4 to 14 m3 of Methane.
 - (i.e. 35000 to 123000 Kcals/ton of coal)
- CBM can be useful to mix with UCG to maintain calorific value of gas

BHEL's Experience with Indian Coals

- Has utilised many types of Coals & Lignite
- Employed different Combustion Technologies
 - Pulverized coal, Fluid Bed & CFBC
- Employed Different Gasification Technologies
 - Atmospheric and Pressurized Moving Bed
 - Pressurized Fluid Bed (6.2MW CCDP)
- Characterized Organics & Inorganics from Combustion, Gasification & Emission View Points.

IGCC – 6.2MW Combined Cycle Demonstration Plant of BHEL

 Unique Facility Configured to study, develop and optimize various aspects, concerning the design, operation, maintenance, scale up of Integrated Coal **Gasification Combined Cycle Power Generation Technology**

Equipment Required for UCG

Upstream Equipment

- Compressors (Air & Nitrogen)
- High Pressure Water Pumps

Gasification Equipment

- Air & Steam Mixing Vessel
- Seamless Steel Tubes and Valves
- •Ignitors

Equipment Required for UCG

Downstream Equipment

- Dust Cyclones
 - Due to high ash content, dust loading in Fuel Gas could be High
- Gas Coolers (Forms part of Power Generation cycle)
- Scrubbers
- Electro De-tarrer

Power Generation System

- Gas Turbine
 - BHEL makes 4 to 250 MW capacity
- HRSG to suit GT
- Steam Turbine to match HRSG

Combined Cycle Plant of BHEL

Seamless Steel Tube Factory of BHEL

Other Equipment required for UCG

- Steel Stacks
- Structures for Injection & Production Wells
- Piping Systems
- Motors etc.

Summing Up....

- BHEL has very Good Experience in Engineering, Manufacturing & Operation of High Pressure Gasifiers and Combined Cycle Power Generation, most of which is akin and relevant for UCG & UCG Based Power Generation also
- BHEL is committed to participate & develop UCG Technology in India and in making available Necessary Equipment for Gasification & Gas Utilization for Power Generation.